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ABSTRACT 

The design of a diagnosable arithmetic unit for a digital computer 
is discussed in this Report. Arithmetical errors are classified, and the 
effects of a circuit failure on an arithmetical result are considered. The 
methods of hardware (wired-in) checking of arithmetic are reviewed, 
and the cost of checking is proposed as a merit criterion. A low-cost 
checking algorithm for product-coded numbers is presented, and its 
effectiveness is evaluated with respect to various types of errors. A 
complete set of arithmetical algorithms for product-coded numbers 
is also presented. The algorithms are especially economical when the 
product code is chosen for the proposed low-cost checking algorithm. - 

1. COMPUTATIONAL ERRORS IN DIGITAL ARITHMETIC 

A. lntroduction 
Functionally, the arithmetic unit of a digital computer 

may be described as a "black box" which receives two 
types of inputs: 

1. The operation code (OC), which uniquely specifies 
one algorithm from the several other arithmetic al- 
gorithms available in the given computer. 

2. One operand (X) or a pair of operands (X, Y), which 
are digital numbers taken from a finite set of repre- 
sentable digital numbers of the given computer. 

Corresponding to every input pair (OC, X) or input 
triplet (OC, X, Y), the black box produces, after a time 
interval t(OC), one of two types of outputs: 

1. One result (S) or a pair of results (S, T) which are 
members of the representable set of digital numbers. 

2. A special signal (SI) from a set of special signals 
indicating singularities. A singularity is a result 
which is not contained in the set of representable 
digital numbers. The associated pseudo-result may 
also be specified for any SI. 

The set of operation codes {OC} and the set of repre- 
sentable digital numbers {X} to be used depends on the 

class of problems to which the computer is applied. The 
logic design of the black box arithmetic unit depends on 
the required operation speeds and the allowable hard- 
ware cost in terms of logic and storage circuits. The logic 
for arithmetic control has been included in the arithmetic 
unit by the above definitions. The least time (a fixed At) 
and the most hardware will be required if arithmetic is 
performed as table look-up of results (S, T) for every 
possible set of inputs (OC, X, Y). Hardware requirements 
are reduced and operation times increased when the re- 
sults (S, T) are generated by means of arithmetical algo- 
rithms. These algorithms are exact rules for computing 
the results by means of a sequence of gating operations 
between storage circuits through combinational logic 
circuitry. Repeated use of the same circuits reduces 
hardware requirements but increases t(OC) and the com- 
plexity of control sequences for the algorithms. 

. 

B. Computational €rrors 

Regardless of its internal logic design, every arithmetic 
unit is intended to be an entirely deterministic black box, 
with only one result corresponding to each set of inputs. 
However, a failure or a temporary malfunction of a cir- 
cuit in the arithmetic unit may cause a different result 

1 
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( S * )  to be generated instead of the specified result ( S ) .  
There are two broad categories of this event 

1. The wrong operation is executed (OC’ instead of 

2. The wrong result is generated (S’ instead of S )  be- 

OC) because of a control error. 

cause of an arithmetical error. 

The detection of both types of computational errors is 
a significant problem in present-day digital computers. 
The more common of two possible detection approaches 
is to incorporate checking into the programs of the com- 
puter. The first approach, programmed “software checks,” 
is the responsibility of the programmer and does not af- 
fect the logic design of the arithmetic unit. The second 
approach, “hardware checking,” has additional hardware 
introduced into the computer, and the result of each 
arithmetical algorithm is automatically (without pro- 
grammed commands) tested for acceptability. Hardware 
checking relieves the programmer of the chore of pro- 
gramming checks; consequently, it may be expected to 
achieve the acceptance found by hardware implementa- 
tions of floating-point arithmetic and by the more recent 
hardware algorithms for significant digit arithmetic, both 
of which are replacing programmed implementations. 
The general acceptance of hardware checking depends 
on the development of relatively economical and fast 
algorithms for the checking operations. The self-evident 
method of duplicating the arithmetic unit offers a refer- 
ence point for a search for more economical approaches. 

C. Properties of Arithmetical Errors 
To limit the scope of this investigation, attention will 

be restricted to arithmetical errors, leaving control errors 
as a separate problem of checking control operations 
throughout the computer. A study of arithmetical errors 
requires, first of all, a complete enumeration and classi- 
fication of these errors. 

Given a computer which employs conventional con- 
stant base b digital numbers n digits long, an arithmetical 
error occurs if the correct (i.e., specified) result corre- 
sponding to (OC, X, Y) is the digital number S composed 
of n digits si: s , - ~  . . . si . . . so, and the actual result is the 
digital number S’ such that 

si  #s; ( O < i < n -  1) 

holds for one or more positions i of S and S ” .  

Corresponding to every possible arithmetical error an 
error number E ,  is defined as composed of n digits: 
en-l . . . e,  . . . e,,, such that 

The error number E is a redundant form, since its digits 
may assume any one of 2b-1 values 

- (b-l ) ,  . . . , - l , O , l , .  . . ,(b-1) 

when both si and s. range from 0 to b - 1. 

An arithmetical error corresponds to an undesired ad- 
dition of the error number E (defined in terms of its 
digits ei) to the correct result S such that the actual result 

S * = S + E  (2) 

is generated, or delivered from storage, by the arithmetic 
unit. 

The most significant properties of arithmetical errors 
are their detectability and their probability of occurrence. 
These properties will be investigated by a study of error 
numbers E which assume the integer values 

(3) 

Since there are 2b-1 possible values for each 
ei (0 < i 5 n-l), there exists a total of 

N = (2b-1)” - 1 (4) 

different forms of error numbers E (excluding the case 
E = 0). The N different forms are divided into N/2 sym- 
metrical pairs of forms. In each pair one form has the 
value + IEI, and the other form has the value - IEI. 
One member of the pair is obtained from the other by 
changing the signs of all nonzero digit values (ei # 0). 

The range of the values of E does not exceed the range 
which is representable by the digits si of S ,  so that 

(bn - 1) 2 IEI 2 1 (5)  

is the range for the magnitudes of E .  There is at least one 
pair of forms corresponding to every possible magnitude 
IEI. Consequently, all (2b-1)” - 1 possible forms of 
error numbers E are classified into b” - 1 magnitude 
classes according to the value of I E I, and every arithmet- 
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ical error is said to have the magnitude I E I, which is the 
magnitude of the associated error number E, computed as 

In all known methods of numerical checking for digital 
arithmetic, the detectability of an arithmetical error de- 
pends on its magnitude. Because of the redundancy of 
the error numbers E,  most magnitude classes will contain 
more than one pair of different forms. These pairs of 
forms will differ in the values, the locations and the total 
number of nonzero digits, e i .  

The second important property of an error number E 
is its multiplicity p, which is defined as the count of non- 

magnitude class there will exist one or more pairs of 
forms which have the least value of p among all members 
of that magnitude class. This value is the minimal multi- 
plicity or weight of the given error magnitude IEI. The 
weight indicates the least number of independent 
changes (not dependent on carry propagation) in the 
digits of the operands or the results which are necessary 
to cause an error of magnitude [ E l  during an addition. 
Because of carry propagation, the error number E may 
assume a form which is not of minimal multiplicity. 

ZPT<? digit x.7 2!zes (e; $. 0) ix :: given h i m  Gf E. In e V & q  

In summary, every symmetrical pair of error numbers 
has an associated error magnitude I E I and an error mul- 
tiplicity p. Every magnitude class IEI (containing one or 
more of these pairs) has a minimal multiplicity, called 
its weight, w(lE1). The value of an error magnitude in- 
dicates its detectability, while the weight of an error 
magnitude may indicate the relative probability of its 
occurrence. Further consideration of this probability is 
necessary because repetitive use of a single defective 
circuit generally will not yield an error of weight 1. 

D. Errors in Binary Arithmetic 
The preceding definitions and properties of arithmeti- 

cal errors apply equally well to any conventional number 
system with a constant positive base b 2 2 and may be 
readily extended to other positional number systems. For 
a more detailed investigation attention will be focused 
on base 2, the case of most immediate interest. 

For binary numbers of n-digits-length, the value of the 
error number is 

The error number contains ei = + 1 for every position i 
in which the correct digit si = 0 was replaced by the 
incorrect digit si = 1, and ei = -1 for a change from 
si = 1 to si = 0. There exists a total of 3" - 1 distinct 
forms of E, which are divided into 2" - 1 magnitude 
classes, since 2" - 1 2 IEI 2 1 is the range of n-digit 
binary numbers. 

For any given error magnitude I E I = K it is necessary 
to establish the weight (minimal multiplicity) w(K). The 
definition of the multiplicity p for a binary error number 
E with digits ei is 

1 -" 

Among all tpahs of forms {& E K ~ .  . . , + E K j  . . . , zk E K ~ )  
which belong to the magnitude class K there is a minimal 
form f E,, for which 

The existence and generation of such minimal forms 
has been investigated for the recoding of multipliers in 
accelerated multiplication (Ref. 1). Using these results, 
the weights w(K) may be computed for alI 2" - 1 error 
magnitudes. According to the theory of multiplier recod- 
ing, a binary number E possesses the "unqualified prop- 
erty M" if and only if 

ei = 0, for 1 5 i _< n-1 (10) 

which means that no two adjacent digits of E are both 
nonzero. After imposing the further restriction that 

(i.e., the two leftmost digits of E are not both +l or both 
-l), Reitwiesner (Ref. 1) shows that 

1. For any error magnitude K there exists among its 
forms a pair of unique forms & EKM which possess 
the unqualified property M; 

2. No other form in the magnitude class K has a lower 
multiplicity than the multiplicity p(EKy)  of k 

3 
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The restriction e,-1 en-* # +I can be imposed in the 
study of multiplier recoding because of the limited range 
of multipliers. This restriction does not apply to binary 
error numbers E, for which e,_l e,-* = + 1  is also pos- 
sible; therefore, minimality must be defined for this case. 

The error number E possesses the “restricted property 

1. ei ei-l = +1 holds pairwise for n-1 2 i 2 k; that 
is, the digits en-l, e,-,, . . . ek all have the same value, 
+1 or -1; 

2. ei ei-% = 0 holds for k 2 i 2 0; this means that the 

ek, ek-l, . . . , e,, possesses the unqualified property 
M .  Since = + 1 or - 1, ek-l = 0 will always hold. 

M” if and only if 

I digital number composed of the rightmost digits 

The existence and minimality proofs of the unqualified 
property M extend readily to the restricted property M. 

The minimal forms 2 E K M ,  corresponding to any error 
magnitude K, are defined to be the unique pair of forms 
which possess the (unqualified or restricted) property M 
among all forms in the magnitude class K. The multi- 
plicity p(+ EK,) of this pair is defined as the weight 
w( K) of the error magnitude K. 

Given any one form t E K j  from the set of forms cor- 
responding to error magnitude K, the minimal form 
+ E K M  is generated according to the recoding rules given 
by Ref. 1. All other dorms of magnitude K may be gener- 
ated from the minimal form + EKM by reversing the re- 
coding procedure. The definitions and rules given in this 
section provide practical methods for the determination 
of the weights w(K) and for the enumeration of all forms 
belonging to any magnitude class K. 

E. The Effects d a Circuit Failure in 
Binary Arithmetic 

Arithmetical errors occur when a defective component 
is employed in generating the result of a specified algo- 
rithm. The external effect of a defective component is 
observed as the failure of a logical circuit to perform its 
prescribed function. The two principal modes of failure 
of logical circuits are termed “stuck on 0 and “stuck 
on 1”. These terms apply to four different locations: 

1. an input to a binary storage circuit; 

2. an input to a combinational logic circuit (gate); 

3. an output of a binary storage circuit; 

4. an output of a combinational logic circuit (gate). 

If the defective circuit is employed only once in a 
particular algorithm, the effect of the failure is the re- 
placement of a single binary variable (0 or 1) by its com- 
plement (1 or 0, respectively). Physically, the replacement 
may occur in the input operands, at an input or output 
of combinational logic, or in the result itself. The effect 
of the failure will be further localized if the design of 
the arithmetic unit is such that one use of a failed circuit 
can affect only one binary digit. This requires, for in- 
stance, that in a binary adder the circuits which generate 
the sum digit should be independent of the circuits which 
generate and transmit carries. 

When the above given conditions are satisfied, an error 
number E j  will be added to the correct result by a single 
use of a failed circuit which affects the j-th digit of the 
n-digit result. The actual result will be 

S‘ (S + E i )  modulo A (12) 

in an arithmetic unit which employs a modulo-A adder 
or subtractor. The four possible nonzero values of Ej in 
this case will be (with n-1 2 i 2 0): 

Ei 2i 

Ej  = -A + 2j 

Ei = -2i 

The first two values occur when a unit is added in posi- 
tion i during the execution of the algorithm. (The second 
case includes a subtraction of A due to the error.) The 
last two values occur when a unit is subtracted in posi- 
tion i. (The fourth case includes a failure to subtract A 
due to the error.) A fifth case 

Ej  = 0 

will occur when the error condition is the same as the 
desired value. In this case the failure will have no ob- 
servable effect and will not change the correct result. It 
is evident that the nonzero errors Ej will belong to two 
magnitude classes, which are 

l E j l  = 2j 

with i in the range n-1 2 i 2 0 for n-digit numbers. 

4 
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In a completely parallel operation, such as parallel 
transmission, digitwise complementation of a register, or 
a single shift, the actual error number will contain only 
a single digit of value + 1  or -1. This condition will 
also hold in parallel addition of two digital numbers if 
the error is caused by the circuits which form or store 
the sum digits. If the error of magnitude zk 2i is intro- 
duced in the input operands, or if it is caused by the 
carry-generation or carry-propagation logic, the corre- 
sponding error number may contain a string of $1 digits, 
beginning at the position i and terminating at some posi- 
tion i + k with a ,1 digit. For instance, a five-bit error 
number with the value E = +1 may assume the follow- 
ing five forms: oooO1, Oooli, Oolii, Oliii and lllli, 
after an addition, while only the first form will OCCUT 

after a completely parallel operation. When - - - _ -  the addition 
is performed modulo 2’ = 32, the form 11111 (value 
-31) may also occur, - - - -  while for addition modulo 2’ - 1 
= 31, the form 11110 (value -30) caused by the “end 

relationships are: + 1 =  -31 modulo 32, and + 1  E -30 
modulo 31. 

----.--1” aluuiiu ciiiij- caii be h i i d .  F‘ai the h t   ti^^ C - Z S ~ S  the 

F. The Effects of a Repetitive Use of One 
Defective Circuit and of Multiple failures 

In many cases of practical interest the circuits of the 
arithmetic unit are used more than once during a given 
algorithm. Serial shifting of several positions and serial 
addition serve as examples of such repetitive use, as well 
as multiplication and division in any arithmetic unit. 
Evidently, a single defective component, when used 
repetitively during an algorithm, will generate an error 
number whose magnitude in most cases differs from 2i. 
If errors of magnitude 23 (weight 1) are called single 
errors, then a single defective circuit may generate other 
than single errors. 

Since the practical objective of error detection and/or 
correction is the protection against, at least, single fail- 
ures of circuitry, it is necessary to investigate the error 
numbers generated by repetitive use of a defective cir- 
cuit during one algorithm. A thorough knowledge of their 
properties, in turn, may indicate which variations of the 
arithmetical algorithms ~ i l l  yield the highest probability 
of single-failure detection. 

A more detailed definition of circuit failure is necessary 
in the case of repetitive use of defective circuits. For 
single use it is sufficient to state that an inversion of a 
binary signal occurs (0 instead of 1, or 1 instead of 0 is 
generated). For repetitive use, however, both the dura- 

tion and the mode of failure must be considered. A 
failure has occurred if the mode of failure persists for the 
entire duration of the algorithm (i.e., for all uses of the 
circuit); if the mode of failure does not last for all uses 
of the circuit, a malfunction has occurred. 

The two modes of failure considered here are “stuck 
on 0 and “stuck on 1”. The damage which is inflicted on 
a result by repeated use of the defective logic circuit is 
called an erasure. An erasure is described as follows: 
given a set of positions { j }  in a binary number, which 
are occupied by binary digits of value 0 or 1, a down- 
erasure occurs when all these digits are replaced by O’s, 
and an uperasure occurs when they are replaced by l’s. 
An erasure is specified completely by the list of posi- 
tions and by the direction (up or down). In the case of 
a failure, the positions of an erasure depend on the de- 
tails of the algorithm. Unless special precautions are 
taken, these positions may be a continuous string over a 

a malfunction, the positions of an erasure also depend 
on the duration and timing of the malfunction. Only a 
part of the previous set of positions (affected by a fail- 
ure) will be affected by a malfunction. 

piiit of the i e d t  oi Gvci the 2iitii-e i e d t .  Iii the CSZ of 

An error number of value Ej corresponds to every 
position of an erasure. An erasure number has the value 

E’ = C Ej  modulo A 

where all error numbers Ej for the given set { j }  of 
erasure positions are included in the sum. For the mode 
“stuck on l”, the values of Ej may be 2j, -A+2j, and 
zero. Then 

For the mode “stuck on O”, the values of Ej may De 
-2j, A - 2j, and zero. In this case 

These values form the set of potential values of an 
erasure number. I t  is necessary to observe that in the 
definition of an erasure every erasure position i can be 
affected only once by the failed circuit. If this restriction 
is not satisfied, one failure may add two or more erasure 
numbers to the result. 

5 
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A third mode of failure, which has not been considered 
before, is “stuck on X .  In this case the value X is inde- 
terminate in terms of 0 and 1 and may be interpreted 
randomly as either 0 or 1 by the following logic cir- 
cuits. In this case the value of the erasure number 

E‘ = E j  modulo A 

may have any one of the five values k 2j, k (A-2’) and 

zero for every Ej in the sum, and the set of potential 
values is further expanded. 

I t  should be observed here that an erasure due to the 
failure mode “stuck on X has the same effect as several 
independent failures during an algorithm in which every 
failed circuit is used only once. The values of the error 
number (or erasure number) due to a failure of two or 
more logic circuits are obtained by summing the error 
(or erasure) numbers due to every separate failure. The 
probability of any particular error magnitude can then 
be estimated by using combinational mathematics. 

II. HARDWARE METHODS FOR THE DETECTION OF ARITHMETICAL ERRORS 

A. Introduction 
Failure of a single component in an arithmetic unit 

may produce an incorrect result which invalidates the 
entire programming effort and wastes computing time. 
Arithmetical errors may be detected either by means of 
programmed check. or by means of hardware checks 
(additional hardware associated with the arithmetic unit). 
Hardware checking relieves the programmer of the non- 
productive effort of programming checking operations. 
Furthermore, hardware checking is applied to the result 
of every arithmetical algorithm which corresponds to a 
single instruction. A component failure or temporary mal- 
function is detected immediately after its occurrence, and 
corrective action may be initiated with a minimal loss 
of time, employing a program-independent interrupt 
sequence. 

Two types of corrective action may be initiated after 
an arithmetical error has been detected. One type is auto- 
matic error correction, which is often implemented in the 
transmission of information by  means of error-correcting 
codes and special hardware for error correction. The 
other type is a replacement sequence or a repair action 
which is initiated upon the detection of an arithmetical 
error. Automatic error correction is necessary for table- 
lookup type arithmetic units in which all results are 
stored permanently, and data transmission from storage 
is the only operation. Error-correcting codes, which have 
been devised for data transmission, are applicable in this 
case. 

When computation in the arithmetic unit is by means 
of algorithms, automatic error correction implies a sec- 
ond arithmetic unit which computes corrections for the 
incorrect results of the first. Furthermore, the error- 
correcting codes used in transmission of information do 
not retain their properties when subjected to arithmetical 
algorithms; and, consequently, new codes must be de- 
vised. The replacement or repair of a defective arith- 
metic unit is, therefore, the more practical solution for 
algorithm-type arithmetic units. The entire attention in 
this case may be focused on codes and methods of de- 
tecting arithmetical errors. 

6. Methods of Numerical Checking 
In algorithm-type arithmetic units the elementary algo- 

rithms are those used for transmission, digitwise comple- 
mentation, addition (and/or subtraction), and shifting of 
digital numbers. Compound algorithms are executed as 
sequences of these elementary algorithms. Consequently, 
checking of the elementary algorithms is a prerequisite 
for any error detection scheme. The checking of data 
transmissions also provides a method for checking the 
validity of input operands, which are transmitted from 
other parts of the computer. 

We have observed that an arithmetical error may be 
described as the addition of the error number E to the 
correct result S, such that the actual result S” = S + E 
is generated. In conventional number systems every out- 
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put result is a valid digital number, and, consequently, S 
and S’ cannot be distinguished for any value of E. Evi- 
dently, additional information must be introduced into 
the number system which will permit us to distinguish S 
and S‘ for at least some (most likely) values of E. 

Two methods have been proposed for checking addi- 

1. The attachment of cheek symbols to all digital num- 

2. The arithmetical encoding of all digital numbers in 

tion and other elementary algorithms: 

bers in the computer. 

the computer. 

The objective of both methods is to provide the means to 
distinguish S and S’ = S + E for a chosen set of error 
magnitudes {I E I}. Both methods depend on the additive 
character of the arithmetical errors and differ principally 
in the implementation of the checking algorithm. 

Since the effects of all elementary algorithms may be 
described in terms of an addition, checking the SUM 
algorithm is the principal problem. For example, the 
other base 2 algorithm are included by considering the 
transmission of X as the addition X + 0, the left shift of 
X as the addition X + X, the complementation with re- 
spect to A as the addition A+(-x), and the right shift 
of X as the addition X+(-X/2). Multiplication and 
division are composed of sequences of the elementary 
algorithms. 

C. Independent Adder and Checker System 
The first important step in devising checking proce- 

dures for an arithmetic unit is the choice of a checking 
procedure for the SUM algorithm, that is, for the output 
of an adder, several of which have been suggested or 
investigated in current technical literature. 

One method of checking an adder employs an inde- 
pendent checker. The adder and the checker are two 
completely independent circuits. Each digital number X 
of a given system has a check symbol c(X), which is 
stored as a pair [X, c(X)] with the number. When two 
numbers (X,Y) are sent to the adder to form the sum 
X + Y their check symbols are sent to the checker, which 
forms the output c(X)*c(Y). This checker output must be 
the check symbol for the sum; that is, the following re- 
quirement is to be satisfied 

c(X+Y) = c(X)*c(Y) (13) 

An acceptance check must be performed to test whether 
Eq. (13) is satisfied. This check consists of computing 
c(X+Y) from the adder output X+Y and comparing it 
with the checker output c(X)*c(Y). If Eq. (13) is not 
satisfied, a computational error has occurred either in 
the adder or in the checker circuits. If Eq. (13) is satis- 
fied, the addition is accepted as valid, although an unde- 
tectable error may have occurred. A block diagram of the 
checking system is shown in Fig. 1. 

I 

c ( X  + Y )  L 
Fig. 1. Adder with independent checker 

The independent checker system has been studied by 
W. W. Peterson (Ref. 2 and 3). In these references he 
discusses independent checkers and proves a basic the- 
orem on such systems. 

Peterson’s Theorem: If there are fewer check symbols 
than integers in the allowed range of the digital 
numbers, and if the check symbols satisfy Eq. (13), 
then c(X) must be the residue of X modulo some 
integer /3 in coded form, where /3 is the number of 
distinct check symbols; and the operation * is addi- 
tion modulo 8. 

Evidently, if there are as many check symbols as integers, 
each integer has a separate check symbol, and the 
checker is a duplicate adder. 

The independent checker system has also been studied 
by H. Gamer (Ref. 4), who discusses application of the 
check moduli (b + 1) and (b - 1) for base b number sys- 
tems. An early design [1948-19501 of a digital computer 
employing this type of checking is described in Ref. 5 
and 6. The RAYDAC computer, which had an inde- 
pendent checking arithmetic unit (discussed in Ref. 5 
and 6) was recently decommissioned after almost a dec- 
ade of satisfactory operation. 

Generally, an independent checker system is limited 
to the detection of errors, since there is no indication 

I 
I 
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whether the failure occurred in the adder or in the 
checker. The undetectable errors correspond to all error 
words E such that 

IEI = kp 0 mod p (14) 

that is, the magnitude of E is an integral multiple k of 
the check modulus p. (k and p are positive integers.) A 
less probable undetectable error occurs when both the 
adder and the checker fail simultaneously and indicate 
acceptance, or when the comparator fails. 

Since the operation of the checker is addition modulo 
p, a residue number system of range 0 5 c ( X )  < /3 may 
be conveniently chosen as the set of check symbols. A 
limited range residue arithmetic unit then serves as the 
“checking arithmetic unit”. 

D. Arithmetical Encoding of Digital Numbers 
Another method for checking the SUM algorithm is the 

premultiplication of all digital numbers X in the allowed 
range by an integer constant a, so that all numbers 2 en- 
tering the adder are encoded in product form (2 = a X ) .  
Because of the distributive law of algebra, 

a x  + a Y  = a ( X + Y )  (15) 

that is, the output of the adder should be a digital num- 
ber in properly coded form. To test the output for valid- 
ity, divide it by a and inspect the remainder. A nonzero 
remainder (the least positive residue of the adder output, 
modulo a) indicates that an arithmetical error has oc- 
curred and that the adder output is actually 

S* = a ( X + Y )  + E (16) 

where the error number E satisfies 

I E I # k a for k, a positive integers. (17) 

All errors corresponding to error numbers E, such that 
I E I = ka, will remain undetected by this checking pro- 
cedure. It is evident that both the quantity and the mul- 
tiplicity of undetectable error numbers depend on the 
choice of a. 

Considering the possible values of a, it is observed that 
if a has the base b of X as a factor (a = kb), then the 
right end digit of a X  is always zero and, therefore, use- 
less. All allowed values of this right end digit will occur 
only if a and b are relatively prime, and this requirement 
should be satisfied for efficient utilization of storage. 

To detect any weight-1 error (only one digit ei # 0 in 
the error number E) the requirement 

should be satisfied by a for any positive integer k and for 
I ei I < b. Equation (18) will be satisfied by any a > b, 
which is also relatively prime to b. The smallest value of 
a which satisfies these requirements is 

a = b + l  (19) 

This value requires not more than two extra digits to 
encode X into ax. 

The detection of errors of higher multiplicity and, also, 
the correction of errors has been investigated for base 
b = 2 in the following references. The earliest descrip- 
tion of product encoding for error detection is attributed 
to J. M. Diamond (Ref. 7). Later D. T. Brown (Ref. 8) 
described a class of double-error detecting and single- 
error correcting binary codes. This work was further 
systematized and some codes for triple-error correction 
were described by W. W. Peterson (Ref. 2). 

Considering the product encoding method more gen- 
erally, an arithmetical transformation is applied to each 
digital number X to get the coded form + ( X ) .  The adder 
forms the sum 2 = + ( X )  + +(Y) which should satisfy the 
requirement 

The acceptance test is made by testing whether the adder 
output 2 is a member of the coded set of numbers; this 
may be considered as the application of a reverse trans- 
formation +-l to 2. In the previous method + was multi- 
plication by a, and +-l was division by a. A block diagram 
of the general coding method is shown in Fig. 2. An error 
indication occurs if adder output 2 is not a properly 
coded number. 

Beside product encoding (premultiplication) discussed 
above, a sum encoding has been suggested, in which a 

ADDERDUTPUT 
ERROR INDICATION 

b 
(ZI 

Fig. 2. Adder for encoded operands 
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k-digits-long check number #(X) with /3 distinct values 
is computed and added to the n-digits-long operand X, 
such that either 

#(X) bn + X 5 0 modulo /3 (21) 

is satisfied by the composite number with #(X) attached 
at the left end of X, or 

X bk + #(X) = 0 modulo /3 (22) 

is satisfied by the composite number with #(X) attached 
at the right end of X. 

Both schemes have been only sketchily suggested, Eq. 
(21) in Ref. 9 and Eq. (22) in Ref. 2, page 244. The prob- 
lems of cq-transmission between X and #(XI during 
addition, and especially those in multiplication and divi- 
sion have not been solved for such sum encoding. 

E. Merit Criteria for the Check Moduli 
In both methods of checking (separate check symbols 

and product encoding) the undetectable errors corre- 
spond to all error numbers E whose magnitudes satisfy 
the equation 

where the check modulus a and the coefficient k are both 
positive integers. The remaining problem is to select a 
value of a which is best suited for checking a given arith- 
metic unit. 

The currently existing criterion for the choice of a is 
the elimination of all errors with low values of the weight 
(minimal multiplicity) of corresponding error numbers 
(Ref. 2 and 8) .  Values of a have been determined which 
yield codes of specified distances d = 2 ,  d = 3  and d=4 
for binary numbers X in the range 0 5 X < M, (a, d) .  
A code of distance d detects all errors of weight d - 1 and 
less when the range of the (uncoded) numbers given 
above is not exceeded by the results of the addition. The 
value of M ,  (a, d) is a function of a and the specified 
distance d .  

It is proposed here that a second criterion, namely the 
cost corresponding to the given choice of a, should be 
considered in the choice of a. It is argued that by per- 
mitting a small percentage of previously detectable (say, 

double) errors to remain undetected, the cost and the 
probability of failure of the checking algorithm may be 
decreased by a significant amount. Instead of “specified 
detection at any cost” the more practical approach ”effec- 
tive detection at low cost” is proposed. 

The cost incurred by introducing emrdetecting algo- 

1. the cost of the special checking hardware; 

2. the increase in the length of digital numbers, re- 

3. the increase in the duration of the algorithms in the 

4. the increase in the complexity of the original arith- 

rithms into an arithmetic unit is distributed as follows: 

quiring additional storage capacity; 

arithmetic unit 

metic unit and arithmetic control. 

It may be expected that the cost will vary for various 
choices oi a. From the viewpoint oi cost, choices of Q 

which give the least increase in cost [expressed as some 
cost function C(a)]  are most desirable. 

The original distance criterion may be more generally 
stated in terms of the probability P(a)  that an erroneous 
result will remain undetected for a given value of a and 
for a given set of arithmetical algorithms with their hard- 
ware implementation. In the discussion of arithmetical 
errors it may be recalled that erasure errors may result 
from a single defective circuit in some algorithms, for 
instance in multiplication and division. To determine 
P(a) for a given set of algorithms, it is necessary to ex- 
press P(a)  as the sum of probabilities that an undetect- 
able error of magnitude IEI = ka will occur, given a 
certain probability of failure for the circuits of the arith- 
metic unit. 

In summary, a systematic approach to the choice of the 
optimum a for a specified arithmetic unit requires the 
consideration of both P(a) and C(a) for values of a which 
are acceptable from viewpoints of both cost and error 
detection probability. The simultaneous minimization of 
properly weighted values of both P(a) and C(a) over the 
acceptable range of values of a may be expected to yield 
a practically acceptable design for an arithmetic unit with 
built-in error detection. The remaining significant prob- 
lem is the assignment of the cost function C(m) and of 
the undetected error probability function P(a) to a given 
arithmetic unit. A second problem of great interest is the 
choice of algorithms which yield the lowest values of 
P(a) and C(a) among various possible implementations 
of an arithmetic unit. 

9 
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111. MINIMAL COST CHECKING ALGORITHM FOR THE 

DETECTION OF ARITHMETICAL ERRORS 

A. Introduction 
Effectiveness and cost are the two principal criteria 

which determine the usefulness of a scheme for detecting 
arithmetical errors. A reference point for effectiveness 
the set of specified distance d (d=2, 3, 4) codes which 
were discussed in the preceding chapter. For these codes 
the specified distance is attained, regardless of cost, by 
the choice of the check modulus a. The codes have been 
discussed with respect to addition (the SUM algorithm); 
the implementation of checking for an entire set of arith- 
metical algorithms remains to be developed. 

The cost is proposed in this investigation as the second 
criterion for determining the usefulness of a given check 
modulus a. To serve as a reference point for cost investi- 
gations a set of minimal cost algorithms for an arithmetic 
unit with error detection of acceptable effectiveness is 
developed. For this purpose it is necessary to postulate a 
typical arithmetic unit and to consider the costs of incor- 
porating error detection. 

The choice of a typical arithmetic unit is governed by 
the practical aspect of this investigation: the development 
of an arithmetic unit for a redundant replacement system 
which would serve as a self-testing and repairing guid- 
ance computer for space vehicles. This practical applica- 
tion of the checking algorithms directs the choices among 
many alternatives in the specification of the typical arith- 
metic unit. A summary of these alternatives is presented 
below. 

B. Alternate Choices for Arithmetical Checking 
A series of choices which affect error checking must be 

made in the selection of the characteristics of a particular 
arithmetic unit. The initial choice is between an algo- 
rithmic and a storage (table-lookup) arithmetic unit. The 
latter may employ transmission type error detecting/ 
correcting codes, while the former requires arithmetical 
checking. The objective of arithmetical checking may be 
either automatic error correction, or error detection fol- 
lowed by replacement or repair of the defective arith- 
metic unit. The estimated lowest hardware cost indicates 
the algorithmic arithmetic unit with error detection as 
the first choice for the intended application, 

Both arithmetical coding and separate check-symbols 
may be used for error detection. Arithmetical coding 
offers the advantage of a uniform code-protected number 
system throughout the computer with the possibility of 
error correction in the operands brought up from the 
memory or from input buffers. Furthermore, less separate 
checking hardware is required when separate operations 
on the check symbols are eliminated. 

Product coding is the only developed scheme of arith- 
metical coding. It is suitable for checking addition be- 
cause of the distributive law: aX + aY = a(X+Y). The 
remaining choices are the base of the coded number sys- 
tem and the value of the check modulus a. Base 2 is 
preferable because of its simplicity and its direct rela- 
tionship of circuit failures to changes in digit values. The 
choice of a remains to be discussed below. 

In summary, the preferred choice is an algorithmic 
binary arithmetic unit with error detection implemented 
by product coding all digital numbers throughout the 
computer. To isolate the effects of single circuit failures, 
a parallel adder with separate sum and carry circuits is 
preferred. For a review, the alternatives for arithmetical 
checking which were considered are summarized in 
Fig. 3. 

C. The Cost of Checking Algorithms 
The error-detecting (decoding) algorithm for arith- 

metical results computed from product coded digital 
numbers 2 (2 = ax) computes the remainder R resulting 
from a division of the result S by a. The value R=O 
indicates that the digital number S is properly coded 
and acceptable; any other value of R (a - 1 2 R 2 1) 
indicates that result S contains an arithmetical error. 
Transmission errors are included as a special case of 
arithmetical errors. 

The algorithm may be implemented either in the 
arithmetic unit itself, preceding and/or following an 
arithmetical operation, or in an independent checker 
whose only function is the decoding algorithm. The use 
of an independent checker is preferable because the sepa- 
rate checker is not affected by failures of the arithmetic 
unit. Concurrent operation with the arithmetic unit is a 
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times, plus the time for choosing quotient digits and the 
time for testing the remainder for R=O. In error- 
correcting codes, the nonzero value of R also conveys 
information on the value of the error number. 

D. The Minimal Cost Checker 

ARITHMETIC UNIT 
TRANSMISSION 

ERRORS, 

SEPARATE 
CHECK SYMBOL CODED OPERANDS 

x - - X ( X )  {x. C ( X , )  

PRODUCT CODING OTHER ARITHMETICAL 

CHOICE OF a UNDEVELOPED 
X a x  CODINGS 

1 SPECIFIED I I M;INt!L I I OPTIMAL 1 
DISTANCE EFFECTIVENESS? 

Fig. 3. Checking methods for digitol arithmetic 

further advantage of the separate checker. Consequently, 
the cost and operation time of the checker for a given a 

is one measure of the cost associated with this a. 

The implementation of the decoding algorithm requires 
hardware for a division of the result S by the constant a, 
in which the quotient is not retained, and a subsequent 
test of the remainder R for the condition R=O. Given an 
ndigit binary number S the required hardware is an 
ndigit shift register and a subtractor for subtracting Q at 
the high-significance end of the shift register. Given an 
a digit binary constant a (aa-1, . . . , a,) the subtractor 
requires one full stage for every 1 except a0 and one-half 
stage for every 0 and for ao. Alternatively, (2" - a) may 
be added modulo 2" to the a leftmost digits of the S regis- 
ter, if this operation is more economical. A circuit which 
indicates when the subtraction is to be performed (i.e., 
when the quotient digit is 1) is also required. Any of the 
existing division algorithms which yield a correct re- 
mainder may be employed; the quotient digits are not 
retained. 

The cost of the decoder may be estimated from the 
count of 0 and 1 digits in Q and 2" - a, allowing one 
full adder (or subtractor) stage for every 1 except a. and 
a half-stage for every 0 and for ao=l (since a is odd, 
a o = l  always holds). The time requirement is n--a shift- 

An exception in the implementation of the division 
S/a occurs for the special choice of 

In this case the identity 

Kri Kmodulo (I - 1) (25) 

where K, r, and i are positive integers, is employed. 
Choosing r = 2" and relabeling K = ti gives 

I ;  (2")' ti m-&r&! (p - 1) W) 

Now any base-2 integer S with n digits S i  may be 
considered to be a base-2" integer T with k digits 
ti (0 5 ti 5 2" - l), where n = ka. Consequently, the 
value of S is 

0 0 0 

(27) 

The remainder of S upon division by 2" - 1 can be com- 
puted as the least positive residue of S modulo 2" - 1, 
denoted lS12a-,, by adding the digits ti modulo 2" - 1. 
Since every digit ti consists of a binary digits, this is the 
addition of a-digits-long sections of S with an "end- 
around" carry. 

The minimum cost implementation of this algorithm 
requires an n-digit shift register (R = ka) with n flip- 
flops (n - 1 to 0) and one full binary adder stage, as 
shown in Fig. 4. No decision on quotient digit value is 
required. 

h-27i-l BASE-2 u OUT 

Fig. 4. Minimum cod checker for a = P- 1 
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S is stored in the shift register, and initially the flip- 
flops a-1 to 0 of the shift register hold the digit to. The 
entire register shifts right, with the digits in flipflops a 
and 0 entering the adder and the sum digit entering the 
flipflop a-  1. After n--a right shifts the flipflops a- 1 
to 0 and the carry stored in delay At represent the re- 
mainder R 

and may be examined for the condition R = 0. 

Faster implementations of the checking algorithm are 
possible. If the single base-2 adder stage is replaced by 
a parallel adder of a-bits length, the register shifts a bits 
at once, and the addition to completed after k - 1 
= (n /a)  - 1 shifts. Faster addition may be performed 
by employing a cascaded arrangement of carry-save 
adders. 

In summary, the check modulus a = 2" - 1 is ob- 
served to have special properties which yield the lowest 
cost for the implementation of the checker. Only one 
full adder is required and special sensing circuitry 
(needed to determine the quotient digit) is eliminated 
for any a 2 2. An increase in speed may be gained by 
additional hardware, since the division algorithm is re- 
placed by a summation of several a digits long sections 
of a binary number. A further advantage of a = 2" - 1 
is that the value 2" - 1 is readily tractable in binary 
arithmetic and may be expected to yield economical 
algorithms for coded operands in the arithmetic unit. 

E. The Effectiveness of a Check Modulus 
Given the integers X to be product-coded as Z = a X 

in the range B > X > 0, the undetectable error numbers 
will have the magnitudes 

IEI = C a ;  with B > C > 0 (29) 

When the uncoded number system employs complements 
with respect to B to represent negative integers, then 

A - a X  = a ( B - X ) ;  i.e., A = a B  (30) 

is required to hold for the product-coded number system 
in which negative integers are represented as comple- 
ments with respect to A. In this case, if the error magni- 
tude I E I = C a is undetectable, then 

is also undetectable. 

The next question of immediate interest is the effec- 
tiveness of the class of check moduli a = 2"-1 with 
a 2 2. The expression 2"- 1 is relatively prime to the 
base b=2 (and any b=2i), but no values of a=2"-1 are 
listed among the product codes of distance d 2 3. Thus, 
a=2"- 1 will yield only a distance d=2 (single-error de- 
tecting) code with distance as an absolute criterion. The 
undetectable errors for an adder operating modulo 
A = B (2" - 1) have only the possible magnitudes 

IEI = C (2"-1), for B > C > 0 (32) 

These magnitudes correspond to all valid coded digital 
numbers Z = (2"- l )X in the range A > 2 > 0. 

The effectiveness of a = 2"-1 may be estimated by 
considering how many error numbers of weight (minimal 
multiplicity) 2, 3, etc. will remain undetected among all 
possible error numbers of the given weight. All error 
numbers of weight 1 will evidently be detected, since 
C (2"-1) # 2i for a > 1. A further study of erasure 
errors is necessary for algorithms in which a defective 
circuit may be employed more than once. 

F. Detection of Error Magnitudes of Weight 2 
Next it is established how many and which error mag- 

nitudes of weight 2 remain undetected when a = 2"-1 
is used as a check modulus. The coded numbers 2 = a X 
consist of n binary digits (zn-* - - - x i  - - - 2,) and have the 
range 

According to the theory of minimal forms (discussed pre- 
viously), the error magnitudes of weight 2 will be of the 
form 

l E I = 2 j - ~ 2 ~  for n - l > j > i > o  (34) 

excluding i = i + 1 (Le., adjacent ones), but not exclud- 
ing the restricted minimal form IEI = 2"-l + 2"-2. 

To count magnitudes IEI = 2i + 2; (with i # i + l), 
the form is restated as IEI = 2; (2" + 1) with 
n - 1 2 m 2 2 and (n-1) - m 2 i 2 0. Counting the 
multiples (2m+1) for every value of m, there are 
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n - 2 multiples for m = 2, (n-3 2 i 2 0) 

n - 3 multiples for m = 3, (n-4 2 i 2 0) 

will yield all undetectable weight-2 error magnitudes of 
the form 2" k 1, that is, with the + 1 digit in the right 
end position. The remaining undetectable weight-2 mag- 
nitudes will be of the form 

IEI = 2i C (2"-1) = 2i (2"+ l), for n-m > i > 0 

1 multiple for m = n-1, (i = 0) To solve C (2"- 1) = 2" k 1, observe first that C is an 
odd integer, since in C 2" - C = 2" 1 the right side is 
odd, while C 2" is even. Furthermore, the only solution 
for 

C(2"-1) = 2" + 1 

giving a total of (n-1) (n-2)/2 different magnitudes. 
The same count exists for magnitudes 2i - 2'; conse- 
quently, there exists a total of 

exists when u = 2 and m = 2j + 1 (with i 2 l), giving N (2) = (n-1) (n-2) + 1 (35) 

C = (2*i+' + 1)/3, for a = 2, m = 2i +1 (37) 
weight-:! error magnitudes, including (n-1) (n-2) mag- 
nitudes with the unqualified property M and one error 
magnitude IEI = 2"-* + 2n-2 with the restricted prop- 
erty M. Each error magnitude I E I has a corresponding 
symmetrical pair of values I+ IEI, and, consequently, 
there are 

The remaining solution is required for 

c (2"-1) = 2"-1 

where C is an odd integer in the range A/(2"- 1) > C > 0. 
An integer solution 

2N (2) = 2 (n-1) (n-2) + 2 

distinct error numbers of weight 2 for the specified num- 
ber length of n binary digits. exists for m = iu, that is, for IEI = 2i" - 1 < A. 

It  remains to be determined how many and which 
weight-:! error magnitudes from the entire set of 
(n- 1) (n-2) + 1 weight-2 magnitudes will remain un- 
detected for a = 2"-1. The undetectable magnitudes 
are 

To count the undetectable weight-2 error magnitudes 
the error numbers are assumed to consist of 

n = k u  (39) 

binary digits and addition is modulo A, where 
IEI = C (2"-1), for A/(2"-1) > C > 0 

and the weight-2 magnitudes are described by 

The undetectable IEI are now IE1 = 2ia - 1, for 
k - 1 2 i 2 1, and all multiples 2' IEI < 2ko - 1. 
Counting the multiples, there are 

IEI = 2i (2" * l) ,withA > IEI > 0 

consequently, the solution of the equation 
a 

2u 

multiples for i = k-1 ; (a - 1 2 i 2 0) 

multiples fori = k-2 ; (2u - 1 2 i 2 0) . 
c (2"-1) = 2" 2 1 (36) 

subject to the conditions . 
(k-1)amultiplesfori = 1; (ku - a - 12 i 2 0) for integer values of C in the range 

which give the total count of A/(2"-1) > c > 0 
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G(2) = ~ ( 1 + 2 +  ... +k-1) = (k-l)ka/2 (41) 

undetectable weight-2 forms IEI = 2ja - 1. Since 
k = n/a the count may be stated in terms of n and a 

For the special case a = 2, there is undetectable 
IEI = 22j+1 + 1 for n > 2i + 1 > 1, and this adds 

N (2)' = (~1-2)~/4 (43) 

undetectable error magnitudes of weight 2 for the check 
modulus a = 3. 

Since there are N (2) = (n-1) (n-2) + 1 weight-2 
error magnitudes, the fraction of undetected weight-2 
error magnitudes for a 2 3 is 

For the case a = 2, the error count v(2) '  must be 
added, giving the fraction 

It may be concluded that the choice of a 2 3 is quite 
effective in the detection of weight-2 error magnitudes. 
For example, given n = 24, the choice a = 3 leaves 
16.6% weight-2 magnitudes undetected; a = 4 leaves 
11.8%; and a = 6 leaves 7.1%. For n = 2S and a = 5, 
there are 9.0%. Since the values and forms of these mag- 
nitudes are known, further protection may be considered, 
if necessary. 

I t  remains to be shown that the detectability of 
weight-1 and weight-2 error magnitudes corresponds to 
the detectability of a single use of one and two defective 
circuits, respectively. Given A = B (2" - l) ,  the two error 
magnitudes which may be caused by a single failure are 

Since the only factors of 2 j  are powers of two, 

25 # C (2"-l), for a > 1, and B > C > 0 

All weight-1 error magnitudes will be detectable, and, 
therefore, all magnitudes B (2"-1) - 2j will also be 
detectable. 

For two independent failures in positions i and i (with 
j > i ) ,  the value of the error number will be 

E ,  = Ej  3- Ei  modulo A; (n-1 2 i > i 2 0) 

Both Ej  and Ei will assume one of four values: k 2i and 
k (A-2i). The sixteen different possibilities of modulo 
A addition give the eight values: 

These values are reduced to four magnitude classes 

It has been shown that when IEI = K is undetectable, 
then IEI = A-K is also undetectable; consequently, the 
problem reduces to finding the undetectable error num- 
bers of weight 2. 

G. The Detection of Erasures with a = 2 a  - I 
The weights and the values of erasure numbers E' in a 

modulo A = 2" - 1 system are of immediate interest. It 
is assumed that any position i of the n-digit result can be 
affected only once by the failed component, although the 
failure may affect several positions: the set {j}. The pos- 
sible magnitudes of erasure numbers (for both up- and 
down-erasures) are 

IE'I = 21 
1 . .  

IE'I = (2-1) - c 2 j  

Each affected'position may be included or omitted in the 
summation; therefore, for m positions there are 2(2m) 
possible values of I E'I. The undetectable erasures for 
a = 2" - 1 will be those satisfying 

and their digitwise complements. 
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Since the list of affected positions depends on the spe- 
cific algorithms, the set of undetectable erasure magni- 
tudes should be minimized by a careful design of the 
algorithms. For instance, excluding the number "all zerosn 
and using the value A = 2" - 1 "all ones" as the only 
allowed representation of zero will permit the detection 
of all total down-erasures. The probability of a total up- 
erasure is reduced by avoiding completely serial algo- 
rithms and by disallowing the value zero (all ones) as an 
operand in ordinary multiplication and division algo- 
rithms. 

Considerable protection against erasures may be ex- 
pected from b a ~ e - 2 ~  operation (instead of base 2) in serial 
addition. In a parallel arithmetic unit recoding of multi- 
pliers and quotients allows base4 algorithms (two bits 
at a time); a single parallel addition is not subject to an 
erasure. In both cases the algorithms are such that an 
erasure may not affect adjacent positions of the result. 
ine  eiiectiveness oi specific dismbuiions of suscepubie 
positions is verified by solving the equation for un- 
detectable erasures for every possible configuration of 

- 

2i. 

H. Detectability of Controlled (Nonadjacentl 
Erasures 

To determine the effectiveness of base4 operation, it 
is necessary to count the percentages of erasures which 
will remain undetected for various values of a. I t  is as- 
sumed that base-4 operation will limit the list of affected 
positions in a result either to all even-numbered posi- 
tions, or all odd-numbered positions. Consequently, an 
n-bit result will be subject to 2"/* - 1 possible values of 
E'. In the case A = aB, the complements A - E' will 
also be undetectable. An increase of two bits (from n to 
n + 2) in word length will add 2"12 new possible values 
of E'. The solution of the equation 

for all 2"12 - 1 values of E' will give the percentage of 
undetectable erasures for a given word length n and for 
a given check modulus a. If complements of E' are par- 
tially or fully detectable, the percentage is appropriately 
reduced. 

To determine the effectiveness of some convenient 
values of a, a computer program was written to count 
the undetectable erasure patterns E' (satisfying1E'I = Ca) 
for the check moduli 

a = 2" - 1,with 12 2 a 2 2 

and word lengths n = ka 2 36, for which 2h - 1 
= (2" - 1) B is satisfied and the product code is digit- 
wise complementable. The results are summarized in the 
Appendix, Section I. The tables list the total number of 
possible erasure patterns, the count of undetectable 
erasure patterns, and the percentage of undetectable 
errors for all word lengths n = ka. The incremental count 
and percentage of undetectable errors are also given for 
every increment of range. For an odd value of n, the 
worst case of (n + 1)/2 affected positions is chosen; for 
even values of n, there are n/2 affected positions. 

For comparison the undetectable erasure patterns 
(base-4 operation) were also counted for distance 3 and 
distance 4 codes given by Peterson (Ref. 2, p. 239, table 
13.1) which satisfy aB = 2" - 1. The results are given in 
the Appendix, Section 11. I t  is interesting to observe that 
the effectiveness (percentage of undetectable erasure pat- 
terns) of these codes is similar to that of the a = 2" - 1 
codes for the same word length and the same amount of 
redundancy. 

In order to provide a list of all possible choices satisfy- 
ing 2"-1 = aB, a list of the prime factors of 2"-1 for 
n 5 100 is given in the Appendix, Section 111. The effec- 
tiveness of other values of a (expressed as the percentage 
of undetectable erasure patterns for base-4 operation) 
will be investigated and compared to the current results. 
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IV. ARITHMETICAL ALGORITHMS FOR 

A. Introduction 
The remaining problem (after the choice of a checking 

algorithm) is the design of a set of algorithms for an 
arithmetic unit which computes with product-coded num- 
bers. The operands are products (a X ,  a Y )  instead of or- 
dinary binary numbers (X,Y) and the result S = aX*aY 
should be the properly coded form S = a (X*Y) of the 
uncoded result X*Y. 

It may be expected that because of these requirements 
there will be an increase in the cost of the arithmetic unit 
both in hardware and in the time required for the algo- 
rithm. It may be further expected that this cost will vary 
for different values of a, similar to the cost of the check- 
ing algorithm. 

On the other hand, the probability of an undetected 
single defective circuit also depends on the hardware 
which is chosen to implement the algorithms. For in- 
stance, the logic design and length of the adder in the 
arithmetic unit determines which types of erasures 
and/or weight-1 errors will be caused by a single defec- 
tive circuit within the adder. 

The principal objective in the choice of algorithms is to 
hold both the additional cost and the probability of unde- 
tected defective circuits within reasonable bounds. The 
algorithms to be implemented are the usual repertoire of 
a general purpose digital computer: SUM, DIFFER- 
ENCE, LEFT SHIFT, RIGHT SHIFT, ROUNDOFF, 
PRODUCT, and QUOTIENT. The singularities "SUM 
OVERFLOW" and "QUOTIENT OVERFLOW" should 
be indicated. For all algorithms it is required that the 
output result should be the product-coded form of the 
result which would have been generated by an ordinary 
arithmetic unit. The n-digits-long binary operands are 
coded forms S = (2"-1)X. 

6. The SUM and DlffERENCE Algorithms 
In the implementation of addition and subtraction the 

first choice is that of the representation of negative num- 
bers; either sign-and-magnitude or complement forms 
may be used for this purpose. For the purpose of error 
detection the sign-and-magnitude forms are markedly 
inferior, since errors in the transmission and manipulation 
of the sign bit are nonnumerical and, therefore, not de- 
tectable by arithmetical checking. 

PRODUCT-CODED BINARY NUMBERS 

In complement forms the sign is indicated by the value 
of the number; consequently, an error in the sign digit is 
arithmetically detectable. The complement of the value X 
in the range M 2 X 2 0 with respect to A is defined as 

C A  ( X )  = A - X ,  with A > 2M (47) 

The two most convenient choices of A in conventional 
binary arithmetic with n-digits-long integers are 

1. A = 2", called radix (two's) complement; 

2. A = 2" - 1, called digitwise (one's) complement. 

These two choices are preferable because addition mod- 
ulo A can be readily performed by either discarding the 
carry out of the leftmost position (i = n- l) ,  or adding it 
in the rightmost position (i = 0). 

For product-coded binary numbers there exists an 
additional requirement 

C A  (a X )  a c B ( X )  (48) 

where the product-coded numbers a X are complemented 
with respect to A and the uncoded numbers X are com- 
plemented with respect to B, that is 

The requirement on complements is now expressed as 
A - a X = a (B-X), which yields the condition 

A = a B  (51) 

to be satisfied by the constants A and B for a given choice 
of a, which in our case is a = 2" - 1. Trying the two 
practical values of A, it is found that for A = 2" no 
integer solution exists for B = 2"/(2"-1) with a 2 2. 
For the choice of A = 2" - 1 there is 

2"-1 B=- 
2"-1 

and integer solutions for B exist whenever n = ka (in- 
teger k > l), giving 
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B = g(k-1)" + 2(k-2)" + . . . + 2" + 1 (53) 

This value of B is not convenient for modulo B addition 
of uncoded numbers; however, uncoded numbers will not 
occur in the computer, and all additions will be per- 
formed modulo A = 2"-1, which is a relatively conven- 
ient choice. 

In conventional floating-point addition the sum of two 
n-digit numbers is defined to be an (n+l)-digit number, 
which may have to be normalized by left or right shifts. 
Consequently, it is necessary to extend the range of the 
operands by one digit to the left and to form the sum of 
two (n+l)-digit numbers. Effectively, the value of A is 
changed from 2" - 1 to 2"" - 1 (or from 2" to 2n.1). 

The choice of B determines the range for the uncoded For product-coded operands and A = 2" - 1 the next 
numbers X to be higher acceptable value A' should again satisfy 

B > 2M, or B 2 2M+1 A' = (2"- l)B' 

which gives the greatest representable positive integer M 
as 

f i e  choice of A' = Zk"" - 1 gives the solution with the 
next higher integer value of B, which is 

Given a complement form 2 = A - a X, to generate 

A' - a X = (A'-A) + (A-a X) = Z + (A'-A) 

the range extension is performed by adding (A'-A) to 
the coded complement form z. Observe that 

The rmge G f  unceded nuxbers x is, &erefme, 

M 2 X 2 - M  

The advantage of this choice of M is that the coded num- 
bers 2 = a X form a one's-complement number system, in 

is in true form (z,,-~ = 0) or in complement form 
(z,,-~ = 1). The rules of a one's-complement arithmetic 
unit will apply in this case; however, it must be remem- 
bered that the numbers 2 are actually products (2"- 1)X, 
and that X is the actual operand specified by the pro- 
grammer. 

which the sign digit zn+ indicates whether the number 2 a-1 

A' - A = 2h(2"- 1) = 2ko C 2' 

and, consequently, the extension is performed by attach- 
ing u digits of value 1 to the left end of 2. If Z is a true 
form, a digits of value 0 are attached. 

(sl) 
0 

The existence of two forms of the value "zero"-"all 
zeros" - corresponding to (2" - 1)0 and "all ones" corre- 
sponding to (2"-1)B = A = 2" - 1 can be used to 
advantage in checking by considering the "all zeros" form 
to be an error and, thus, detecting all total down- 
erasures. It is also important to recollect that the choice 
of B = A/(2"-1) was also the most convenient choice in 
the evaluation of the effectiveness of check modulus 
a = 2" - 1. 

The singularity SUM OVERFLOW must be indicated 
for coded numbers 2. In a fixed-point arithmetic unit 
this may be conveniently implemented by a comparison 
of the sign digits of the input operands (Y"-~,  zn-J and of 
the sum (sn-J. The case 

To reduce the length back to n digits, the (n+a)-digit 
number is shifted right until the a + l  leftmost digits are 
identical with the original sign digit; then a leftmost 
digits are dropped. 

If correction of SUM OVERFLOW is the only objec- 
tive of the extension, an actual extension by only one 
digit at the left is sufficient, since all a new digits will 
assume the same value after an addition (with or with- 
out OVERFLOW). The general extension/reduction rule 
remains in effect and is important for other algorithms. 

C. The Arithmetic SHIFT Algorithms 
The two arithmetic shifts of one position may be inter- 

preted in terms of addition: the LEft Arithmetic Shift 
(LEAS) of 2 as the addition 2 + 2, and the RIght Arith- 
metic Shift (RIAS) as the addition 2 + (-Z)/2. The 

Yn-1 = Zn-1# sn-1 

indicates that overflow has occurred. 

(55) 
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objective of the shift algorithms is to provide a fast 
method for the multiplication and division of the operand 
2 by the base, integer 2. 

The LEAS algorithm should yield W = a(2X) for true 
forms (2 = ax ,  zka-1 = 0) ,  and W = A - a(2X) for com- 
plement forms ( Z  = A - a x ,  &a-1 = 1) .  The shift is not 
arithmetical if OVERFLOW will occur, that is, if 
2ka-l # 2ka-Z before the shift. The result w of the LEAS 
algorithm is described in terms of the digits of the oper- 
and Z as follows: 

The "end-around shift of zh-l is necessary to form the 
correct result for the complement forms as follows: 

W = 2(A-aX) - 2ka+l  = 

2A - (2h-1) - 2aX = A - a2X 

The RIAS algorithm should yield as its result V (given 
the operand Z ) ,  V = a(X/2)  for true forms (2 = ax) ,  
and V = A - a(X/2)  for complement forms (2 = A - ax) .  
Observe that V may be exactly represented only for even 
values of X ,  since a X / 2  will only be an integer if X is 
even. (a is always odd.) If X is odd, ROUNDOFF (to the 
closest even X )  must precede or be combined with the 
shift . 

In true forms (2 = ax), X will be even when Z is even, 
that is, when zh-l = zo = 0 is satisfied. In complement 
forms (2 = A - ax), X will be even when Z is odd, that 
is, when zh-] = zo = 1 is satisfied. This is true because 
A = 2h - 1 is odd, and then a X  = A - Z is even for 
odd values of 2. The result V of the RIAS algorithm is 
described in terms of the digits of operand Z as follows: 

if zka-l = zo. 

The "end-around shift of zo again is required because 
of complement forms 

V = (A-aX-zo ) /2  + ~ ~ 2 ~ ~ - ~  = 

A / 2  - aX/2- 1/2 + Zh-' = A - aX/2 

When the condition & - I  = zo is not satisfied, the 
ROUNDOFF algorithm (discussed below) must be ap- 
plied to Z in order to satisfy the condition. Roundoff by 
truncation (discarding zo) cannot be used, since the 
truncation will not yield a product-coded number. 

Shifts over several positions may be considered as a 
sequence of single shifts. They may be executed if the 
specified conditions are satisfied for every single shift in 
the sequence. 

D. The (2. - I )  Z Algorithm 
Multiplication by the constant 2" - 1 is necessary in 

the implementation of the QUOTIENT algorithm. The 
constant 2" - 1 possesses properties which make the en- 
coding of 2 into (2" - l ) Z  relatively fast and simple in a 
binary arithmetic unit. 

Given a ku digit operand 2 in true (2 = ax) or in 
complement (2  = A - a x )  form, initially the range is 
extended by prefixing a O-digits or a l-digits at the left 
end of 2 to get ( k + l ) a  digit operand 2' = a X  or 
2' = A' - ax. The expansion of range has been dis- 
cussed in connection with the SUM algorithm. Now 2' 
is shifted a positions to the left according to the LEAS 
algorithm, generating 2"aX or A' - 2"aX. The operand 
2' is also complemented, generating A' - aX or ax. One 
addition modulo A' = 2(k+1)a - 1 will yield 

W = 2"aX + (A' - ax) aX(2" - 1) modulo A'; or 

W = (A' - 2"aX) + aX 3 A' - aX(2" - 1) modulo A' 

An "end-around carry will occur if and only if Z is in 
true form and may be inserted in advance to speed up 
the addition. 

The result will be ( k + l ) a  digits long; consequently, 
provisions must be made to store the extended number as 
well as to add modulo A' = 2(k+1)a - 1. A circuit arrange- 
ment for serial multiplication by 2" - 1 is shown in Fig. 
5; in this arrangement ( k + l ) a  steps of addition are 
required. The adder may add a digits at a time; then only 
k + l  steps are needed. Finally, a single step would be 
sufficient in a ( k +  1)a-digit, parallel adder. 

1 8  
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RESULT W 

ADDER INVERTER 

'"tm+o " ' W O  

( m + l + u  DIGITS) Z m ' " r ,  Zm".ZO 
+ v 
u MGlT m+l DIGIT 

EXTENSION OPERAND Z t 
INITIALLY: im 

Fig. 5. Serial circuit for the (P- 1)Z algorithm 
with m = ka-1 

€. The W/(2a - I I  Algorithm 
Division by 2" - 1 is required in the PRODUCT 

algorithm, and is also very useful in the ROUNDOFF 
algorithm. The method for division by 2" - 1 has been 
discussed in the investigation of the checking algorithm; 
however, only the remainder was of interest there, and 
the quotient was actually never generated. The same 
considerations which led to the minimal cost checker can 
be applied to actual division by 2" - 1, in which the 
quotient is generated, and the remainder is known to be 
zer0,sinceZ = aXorZ = A - UX = aB - UX = a ( B - X )  
will hold for every product-coded number in the com- 
puter. 

When the remainder is known to be zero, division is an 
inverse operation to multiplication, which was described 
in the preceding section. Given the (k+l)a-digit forms 
W, the forms Z must be recovered: 

1. true form: W = aX(2a-l), recover Z = ax; 

2. complement: W = A' - ~X(2~-1) ,  recover 
Z = A - a X .  

The algorithm may be generally stated as follows: 

since w = ~ Q Z  + Z modulo A'; that is, the digits of 2 
may be recovered by adding 2"2 to the operand W, and 
accounting for the "end around" cany. The "end around" 
carry must be determined and employed in advance. The 
entire division process is possible because the rightmost 
a digits of 2"Z are known to be the same as the sign digit 

of W (and of 2"Z). The "end around" cany co also de- 
pends on the sign digit (~h-~,. , , )  of w. When W is a com- 
plement form, co = 1. The carry occurs for W in 
complement form because the result is true and 2"2 is 
true; while for w in true form, 2"2 is complement, Z is 
complement, and no "end around carry occurs. 

When the "end around carry and the a rightmost 
digits of %% are known, the a rightmost digits of Z can 
be computed; they, in turn, are the next u digits of 2"2, 
etc. The digits of 2 may be generated either serially, or 
a digits at a time, beginning with the rightmost digit(s). 
Designating 2"Z = Y, the algorithm is 

co = Wka-l+a 

- -  y j =  ~ ~ - ~ + ~ , f o r u - l > j 2 0  

The digits Zj for ku-1 + a 2 i 2 ka will all be iden- 
tical with Zh-l and may be discarded, thus contracting 
Z to the length of ka digits. 

A circuit for serial division by 2" - 1 is shown in Fig. 6; 
it requires ka steps of addition. A parallel adder for a 
digits at a time will permit completion in k steps. The 
circuit employs the same hardware as the multiplication 
circuit of Fig. 5. 

INITIALLY: Fmfl '..W& 
(u DIGITS) 

OPERAND W BINARY RESULT Z 

ADDER 
(m+U+l digits) 

(m + I DIGITS) 

INITIALLY: wm+,, 

Fig. 6. Serial circuit for the W / ( F -  1) algorithm 
with m = ka-1 

The important observation here is that division has 
been replaced by modulo A' addition in which the "end 
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around carry co is known in advance to be equal to the 
sign digit w,,,+~ of the operand W, and is stored in the 
carry delay At. The rightmost a digits of 2"2 are also 
known. They are all equal to and initially occupy 
the a-digits-long delay line or shift register a At. The 
algorithm for division by 2"-1 is recursive; therefore, 
only a digits of the result Z can be generated at once. TO 
get a digits at once, the single-digit adder of Fig. 6 is 
replaced by an a-digit, parallel adder, and the inputs are 
all a digits from the delay line a At and a digits of the 
operand W. 

F. The ROUNDOFF Algorifhm 
The ROUNDOFF algorithm is employed to reduce the 

length of a digital number by discarding one or more 
digits at the least significant end of the number and 
adjusting the value of the remaining digital number 
according to a specified roundoff rule. The simplest 
application of this algorithm occurs in the RIAS algo- 
rithm. The rightmost digit of a product-coded number 
may not be dropped, as for uncoded numbers, since 
removal of a digit may generate an unacceptable result. 
The RIAS algorithm requires the condition ~ k ~ - ~  = zo to 
be satisfied. This condition assures that X is an even 
integer ( X , )  in the coded forms Z = ax, or Z = A - ax,. 
If the condition is not satisfied, X is an odd integer ( X , )  
and the rounded form ax, = a ( X , + l )  must be generated 
before the shift. The rounded form Z' will have the coded 
values 

Z' = ax, + a, or Z' = A - ax, - a, for up-rounding; 

Z' = axo - a, or Z' = A - ax, + a, for down-rounding. 

The coded form (+ a) of e 1 is added to Z to generate 
Z'; to avoid bias, rounding may be performed in both 
directions with equal probability. One convenient round- 
ing rule for the case ~ k ~ - ~  = 0 and zo = 1 is to add 
a = 2" - 1 by dropping zo and adding 2". In any case it 
is important to avoid overflow which may be caused by 
up-rounding a number of maximum allowed magnitude 
IZ l  = A - a. 

The second and more general problem of roundoff is 
the reduction of a double-length result (for instance, a 
product) to the standard length. A simple truncation of 
the product-coded number will not yield a product-coded 
number of specified length. The coded number must be 
rounded by the addition or subtraction of an integral 
multiple K(2" - 1) of the check modulus 2" - 1. The value 
of K is the value which is added or subtracted during the 
roundoff of an uncoded number. 

Roundoff in conventional binary arithmetic is relatively 
simple: given a 2n digit number X = 2" F + G, where 
F and G are n-digit numbers, so that G is in the range 
2" > G > 0, the only two alternatives are 

(a) form X - G = 2" F ,  (rounding down); 

(b) form X + (2"-G) = 2"(F+1), (rounding up). 

The first alternative is implemented by discarding G and 
the second is implemented by discarding G and adding 1 
in the least significant position of F.  The choice between 
(a) and (b) may depend on the value of G or on the value 
of the rightmost digit of F ;  or it may be always (a), which 
is the case of simple truncation. 

Product-coded binary numbers a x  should be rounded 
in exactly the same fashion. The roundoff procedure con- 
sists of the following steps 

1. Compute the value of G by applying the W/(2" - 1)  
algorithm to ax; 

2. choose the rounding method (up or down); 

3. compute aX - aG for rounding down, or 

4. compute aX + a(2"-C) for rounding up. 

After the third step the rightmost n digits of the result 
are all 0's or all 1's (for true and complement forms of 
ax, respectively), and the result may be contracted to 
single length by discarding these digits. The detailed 
implementation of the ROUNDOFF algorithm is to be 
considered in further study of the arithmetical logic. 

G. The PRODUCT Algorithm 
The principal observation in the PRODUCT algorithm 

is that the operands are product-coded numbers, and the 
result of a conventional multiplication ( a x )  (aY) = a2XY 
will not be the product-coded form aXY. The form 
(2"- 1)XY is readily obtained by applying the W/(2" - 1) 
algorithm to the intermediate result (2" - 1)2XY. The 
PRODUCT algorithm is then concluded by the ROUND- 
OFF algorithm. 

Given the ka digit operands (2"- l ) X  and (2"- 1)Y, the 
complete PRODUCT algorithm consists of the following 
steps 

1. Extend the operand range to 2ka digits; 

2. Perform a conventional one's-complement multipli- 
cation to generate the 2ka-digit result (2" - 1)P' 
= (2"-1)2Z; 
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3. 

4. 

Divide (2"- 1)P' by 2"-1 using the W/(2"- 1) algo- 
rithm to generate the (2k-1)u-digit product 

Apply the ROUNDOFF algorithm to contract P' to 
the ka-digit (single length) result P = (2"-1)F. 

P' = (2"-1)Z; 

The value of F should be the specified value of the 
single-length product of uncoded binary numbers X and 
Y, expressed in the system in which negative numbers 
are represented by complements with respect to 
B = (2h-1)/(2"-1). 

Several problems remain to be resolved in the detailed 
logic design of the arithmetic unit. They include the 
application to fractional ranges, the selection of the most 
suitable one's-complement multiplication scheme and the 
efficient implementation of roundoff. Another problem of 
interest is the existence of undetectable single errors 

modulus, that is, when X = k, (2"-1) and Y = k, (2"-1) 
is encountered. A further study of these problems will be 
presented in the detailed description of the arithmetic 
unit. 

when &e uncoded operands Eire m1lltiples of &e check 

H. The QUOTIWT Algorithm 
An ordinary binary division of dividend X by divisor Y 

yields a quotient Q and a remainder R such that 
X = QY + R is satisfied, with R < Y. Dividing aX by 

aY gives aX = uYQ + aR, and the quotient Q is gener- 
ated in uncoded form; consequently, it is not protected 
against errors. 

To generate a coded quotient aQ, start with the divi- 
dend a2X and in this case obtain 

aZX = (4) (aY) + a2R 

The QUOTIENT algorithm for product-coded operands 
is composed of the following steps 

Apply the (2"-1)Z algorithm to the dividend 

Perform binary one's-complement division to get the 
ka-digit quotient (2"- 1)Q; 

The coded remainder (2"-1)R is obtained from 
(2"-1)*R by means of the W/(2"-1) algorithm. 

2 = (2"-1)X; 

It is interesting to observe that the intermediate r d t  
(2a-1)22 of the PRODUCT algorithm may be directly 
applied as the dividend a2X in the QUOTIENT algo- 
rithm. 

The detailed design of the arithmetic unit requires the 
choice of a suitable one's-complement division method 
and the choice of a range for the coded operands. A 
method of indicating singularity QUOTIENT OVER- 
FLOW (illegal division) is also required. 

21 
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Total 

1 

3 

7 

15 

31 

63 

127 

255 

51 1 

1023 

2047 

4095 

8191 

16383 

32767 

65535 

131071 

262143 

APPENDIX 

1. EFFECTIVENESS O F  BASE4 OPERATION FOR a = 2"- 1 

Table A-1. a = 2, a = 3 

Increment 

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

16384 

32768 

65536 

131072 

n 

Count 

0 

1 

4 

9 

36 

73 

292 

585 

2340 

4681 

18724 

87381 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

% 

0 

14.3 

12.9 

14.3 

14.1 

14.3 

14.3 

14.3 

14.3 

14.3 

14.3 

14.3 

Count of possible erasure numbers Total undetectable erasure numbers Increment of undetectable erasure numbers 

Count 

0 

0 

1 

4 

10 

21 

42 

84 

169 

340 

682 

1365 

2730 

5460 

10921 

21844 

43690 

87381 

Table A-2. a = 3, a = 7 

0 

0 

14.3 

26.7 

32.3 

33.3 

33.1 

32.9 

33.1 

33.2 

33.3 

33.3 

33.3 

33.3 

33.3 

33.3 

33.3 

33.3 

Count of possible erasure numben 
n 

Increment 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

3 

7 

31 

63 

255 

51 1 

2047 

4095 

16383 

32767 

131071 

262 143 

3 

4 

24 

32 

192 

256 

1536 

2048 

12288 

16384 

98304 

131072 

0 

0 

1 

3 

6 

11 

21 

42 

85 

171 

342 

683 

1365 

2730 

5461 

10923 

21846 

43691 

0 

0 

25.0 

37.5 

37.5 

34.4 

32.8 

32.8 

33.2 

33.4 

33A 

33.3 

33.3 

33.3 

33.3 

33.3 

33.3 

33.3 

ncrement of undetectable erasure numbers I 
Count 

0 

1 

3 

5 

27 

37 

219 

293 

1755 

2341 

14043 

43691 

% 

0 

25.0 

12.5 

15.6 

14.1 

14.5 

14.3 

14.3 

14.3 

14.3 

14.3 

14.3 

23 
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Count of possible erasure numbers 

Total Increment 

3 3 
15 12 
63 48 
255 192 
1023 768 
4095 3072 
16383 12288 
65535 49152 
2621 43 196608 

n 

4 
8 
12 
16 
20 
24 
28 
32 
36 

Total undetectable erasure numbers 

Count % 

0 0 
0 0 
1 1.59 
16 6.27 
100 9.78 
401 9.79 
1316 8.03 
4368 6.67 
16705 6.37 

Count 

0 
0 
1 
15 
84 
301 
915 
3052 
12337 

Table A-4. a = 5, (Y = 31 

% 

0 
0 
2.08 
7.81 
10.90 
9.80 
7.45 
6.21 
6.27 

5 
10 
15 
20 
25 
30 
35 

7 7 
31 24 
255 224 
1023 768 
8191 7168 
32767 24576 
262143 229376 

n 

5 
10 
15 
20 
25 
30 
35 

Count of possible erasure numbers Total undetectoble erasure numbers Increment of undetectable erasure numbers 

Total Increment Count % Count % 

7 7 0 0 0 0 
31 24 1 3.23 1 4.17 
255 224 8 3.14 7 3.13 
1023 768 33 3.23 25 3.26 

8191 7168 264 3.22 231 3.22 
32767 24576 1057 3.23 793 3.23 
262143 229376 8456 3.23 7399 3.23 

Count 

0 
1 
8 
33 
264 
1057 
8456 

Count % 

0 
3.23 
3.14 
3.23 
3.22 
3.23 
3.23 

0 
1 
7 
25 
231 
793 
7399 

n 
Total Increment 

0 
4.17 
3.13 
3.26 

1 3.22 
3.23 

~ 3.23 

6 

12 
18 
24 
30 
36 

Count of possible erasure numbers Total undetectable erasure numbers 
n 

Total Increment Count % 

7 
63 
51 1 
4095 
32767 
262143 

Increment of undetectable erasure numbers 

Count % 

7 
56 
448 
3584 
28672 
229376 

Count of possible erasure numbers Total undetectable erasure numbers 
n 

Total Increment Count % 

Increment of undetectable erasure numbers 

Count % 

0 
0 
1 

64 
lo00 
8001 

6 7 7 0 0 
12 63 56 0 0 
18 51 1 448 1 0.20 
24 4095 3584 64 1.56 
30 32767 28672 lo00 3.05 
36 262143 229376 8001 3.05 

0 
0 
0.20 
1.56 
3.05 
3.05 

0 0 
0 0 
1 0.22 

63 1.76 
936 3.26 
7001 3.05 

0 
0 
1 

63 
936 
7001 

0 
0 
0.22 
1.76 
3.26 
3.05 

24 
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n 
Total 

Table A-6. a = 7, a = 127 

Increment Count 

0 

1 

16 

129 

2064 

x 

0 

0.79 

0.78 

0.79 

0.79 

Count 

0 

1 

15 

113 

1935 

x 

0 

0.89 

0.70 

0.79 

0.79 

n 
Total Increment Count x Count x 

n 
Total Increment Count x Count x 

Count of possible erasure numbers 

Total Increment 

1 

Total undetectable erasure numbers Increment of undetectable erasure numbers 

Count x Count x 

10 31 31 

20 1023 992 

30 32767 31744 

0 0 0 0 

0 0 0 0 

1 1 

0 

0 

1 

0 0 0 
0 0 0 

1 

Increment of undetectable erasure numberr 

7 

14 

21 

28 

35 

~~ 

15 

127 

2 w  

16383 

262143 

15 

112 

1920 

14336 

245760 

Table A-7. a = 8, a = 255 

15 

240 

3840 
61440 

8 

16 

24 

32 

15 

255 

4095 

65535 255 0.42 

Table AS. a = 9, a = 51 1 

Total undetectable erasure numbers I Increment of und-Me -sure numban I 

9 

18 

27 

36 

31 

51 1 

16383 

262143 

31 

480 
15872 

245760 

0 

0.20 

0.20 

0.20 

0 

1 

31 

48 1 

0 

1 

32 

513 

0 

0.20 

0.20 

0.20 

Table A-9. a = 10, a = 1023 

32767 31744 

25 
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11 

22 

33 

Table A-10. a = 11, LY = 2047 

63 63 0 0 0 0 

2047 1984 1 0.05 1 0.05 

131071 129024 64 0.05 63 0.05 

n 

11 

22 

33 

Count of possible erasure numbers Total undetectable erasure numbers Increment of undetectable erasure numbers 

Total Increment Count % Count % 

63 63 0 0 0 0 

2047 1984 1 0.05 1 0.05 

131071 129024 64 0.05 63 0.05 

Count of possible erasure numbers 
n 

Total Increment 

Total undetectable erasure numbers Increment of undetectable erasure numbers 

Count % Count % 

26 

Count of possible erasure numbers Total undetectable erasure numbers 
n 

Total Increment Count % 

12 63 63 0 0 

24 4095 4032 0 0 

36 2621 43 258048 1 

Increment of undetectable erasure numbers 

Count % 

0 0 

0 0 

1 
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63 

63 

2047 

4095 

262143 

II. EFFECTIVENESS OF BASE4 OPERATION FOR FIXED DISTANCE CODES 

0 0 

1 1.59 

0 0 
33 0.81 

469 0.18 

30 

36 

Table A-1 2. Distance 3 codes - 
a 

55 

75 

49 

69 

47 

87 

77 

71 

95 

Count of possible 
erasure numbers 

1023 

1023 

2047 

2047 

4095 

16383 

32767 

262143 

262 143 

23 

20 

46 

33 

90 
1 96 

42 1 

3700 

2881 

2.25 

1.96 

2.25 

1.61 

2.20 

1.96 

1.28 

1.41 

1.10 

Table A-1 3. Distance 4 codes 

n 

11 

12 

22 

24 

36 

a 

89 

105 

267 

357 

555 

Undetectable erasure numbers 

27 
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111. FACTORIZATION OF 2"- 1 INTO PRIMES 

Table A-14 indicates all values of a which satisfy the 
condition 2" - 1 = aB. Any prime factor or any product 
of prime factors will serve as a for a digitwise comple- 

mentable product code with A = 2"-1 (n-bit words). 
The source of Table A-14 is Ref. 10. 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Table A-14. Prime factors of 2"-1 

Prime factors 

3 
7 
3 x 5  
31 
3 X 3 X 7  
127 
3 x 5 ~ 1 7  
7 x 73 
3 x 11 x 31 
23 x 89 
3 x 3  x 5  x 7  x 13 
8191 
3 x 43 x 127 
7 x 31 x 151 
3 x 5 x 17 x 257 
131071 
3 x 3 x 3 x 7 x 19 x 73 
524,287 
3 x 5 x 5 x 11 x 31 x 41 
7 x 7 x 127 x 337 
3 x 23 x 89 x 683 
47 x 178.481 
3 x 3 x 5 x 7 x 13 x 17 x 241 
31 x 601 x 1,801 
3 x 2731 x 8,191 
7 x 73 x 262,657 
3 x 5 x 29 x 43 x 113 x 127 
233 x 1,103 x 2,089 
3 x 3 x 7 x 11 x 31 x 151 x 331 
2,147,483,647 
3 x 5 x 17 x 257 x 65,537 
7 x 23 x 89 x 599,479 
3 x 43,691 x 131,071 
31 x 71 x 127 x 122,921 
3 x 3 x 3 x 5 x 7 x 13 x 19 x 37 x 73 x 109 
223 x 616,318,177 
3 x 174,763 x 524.287 
7 x 79 x 8,191 x 121,369 
3 x 5 x 5 x 11 x 17 x 31 x 41 x 61,681 
13,367 x 164,511,353 
3 x 3 x 7 x 7 x 43 x 127 x 337 x 5,419 
431 x 9,719 x 2,099,863 
3 x 5 x 23 x 89 x 397 x 683 x 2,113 
7 x 31 x 73 x 151 x 631 x 23,311 
3 x 47 x 178,481 x 2,796,203 
2,351 x 4,513 x 13,264,529 
3 x 3 x 5 x 7 x 13 x 17 x 97 x 241 x 257 x 673 
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n 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

Table A-1 4. Prime factors of 2"- 1 (Cont'd) 

Prime factors 

127 x 4,432,676,798,593 
3 x 11 x 31 x 251 x 601 x 1.801 x 4,051 
7 x 103 x 2,143 x 11,119 x 131,071 
3 x 5 x 53 x 157 x 1,613 x 2,731 x 8,191 
6,361 x 69,431 x 20,394,401 
3 x 3 x 3 x 3 x 7 x 19 x 73 x 87,211 x 262,657 
23 x 31 x 89 x 881 x 3,191 x 201,961 
3 x 5 x 17 x 29 x 43 x 113 x 127 x 15,790,321 
7 x 32,377 x 524,287 x 1,212,847 
3 x 59 x 233 x 1.103 x 2,089 x 3,033,169 
179,951 x 320,343 x 1,780,337 
3 x 3 x 5 x 5 x 7 x 11 x 13 x 31 x 41 x 61 x 151 x 331 x 1,321 
2,305,843,009,213,693,951 
3 x 715,827,883 x 2,147,483,447 
7 x 7 x 73 x 127 x 337 x 92,737 x 649,657 
3 x 5 x 17 x 257 x 641 x 65,537 x 6,700,417 
31 x 8,191 x 145,295,143,558,111 
3 x 3 x 7 x 23 x 67 x 89 x 683 x 20,857 x 599,479 
193,707,721 x 761,838,257,287 
3 x 5 x 137 x 953 x 26,317 x 43,691 x 131,071 
7 x 47 x 178,481 x 10,052,678,938,039 
3 x 11 x 31 x 43 x 71 x 127 x 281 x 86,171 x 122,921 
228,479 x 48,544,121 x 212,885,833 
3 x 3 x 3 x 5 x 7 x 13 x 17 x 19 x 37 x 73 x 109 x 241 x 433 x 38,737 
439 x 2,298,041 x 9,361,973,132,609 
3 x 223 x 1,777 x 25,781,083 x 616,318,177 
7 x 31 x 151 x 601 x 1.801 x 100,801 x 10,567,201 
3 x 5 x 229 x 457 x 174,763 x 524.287 x 525,313 
23 x 89 x 127 x 581383,643,249,112,959 
3 x 3 x 7 x 79 x 2,731 x 8,191 x 121,369 x 22,366,891 
2,687 x 202,029,703 x 1,113,491,139,767 
3 x 5 x 5 x 11 x 17 x 31 x 41 x 257 x 61,681 x 4,278,255,361 
7 x 73 x 2,593 x 71,119 x 262,657 x 97,685,839 
3 x 83 x 13,367 x 164,511,353 x 8,831,418,697 

3 x 3 x 5 x 7 x 7 x 13 x 29 x 43 x 113 x 127 x 337 x 1,429 x 5,419 x 14,449 
31 x 131,071 x 9,520,972,806,333,758,431 
3 x 431 x 9,719 x 2,099,863 x 2,932,031,007,403 
7 x 233 x 1,107 x 2,089 x 4,177 x 9,857,737,159,463 
3 x 5 x 17 x 23 x 89 x 353 x 397 x 683 x 2,113 x 2,931,542,417 
61 8,970,019,642,690,137,449,562,111 
3 x 3 x 3 x 7 x 11 x 19 x 31 x 73 x 151 x 331 x 631 x 23,311 x 18,837,001 
127 x 911 x 8,191 x 112,901,153 x 23,140,471,537 
3 x 5 x 47 x 277 x 1,013 x 1,657 x 30,269 x 178,481 x 2,796,203 
7 x 2,147,483,647 x 658,812,288,653,553,079 
3 x 283 x 2,351 x 4,513 x 13364,529 x 165,768,537,521 
31 x 191 x 524,287 x 12,761,021,422,289,693,921 
3 x 3 x 5 x 7 x 13 x 17 x 97 x 193 x 241 x 257 x 673 x 65,537 x 22,253,377 

3 x 43 x 127 x 4,363,953,127,297 x 4,432,676,798,593 
7 x 23 x 73 x 89 x 199 x 153,649 x 599,479 x 33,057,806,959 
3 x 5 x 5 x 5 x 11 x 31 x 41 x 101 x 251 x 601 x 1,801 x 4,051 x 8,101 x 268,501 
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